3.193 \(\int \frac{A+B \tan (c+d x)}{\sqrt{\tan (c+d x)} (a+i a \tan (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=194 \[ \frac{(67 A-3 i B) \sqrt{\tan (c+d x)}}{60 a^2 d \sqrt{a+i a \tan (c+d x)}}+\frac{\left (\frac{1}{8}-\frac{i}{8}\right ) (A-i B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac{(A+i B) \sqrt{\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac{(13 A+3 i B) \sqrt{\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}} \]

[Out]

((1/8 - I/8)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(a^(5/2)*d) +
 ((A + I*B)*Sqrt[Tan[c + d*x]])/(5*d*(a + I*a*Tan[c + d*x])^(5/2)) + ((13*A + (3*I)*B)*Sqrt[Tan[c + d*x]])/(30
*a*d*(a + I*a*Tan[c + d*x])^(3/2)) + ((67*A - (3*I)*B)*Sqrt[Tan[c + d*x]])/(60*a^2*d*Sqrt[a + I*a*Tan[c + d*x]
])

________________________________________________________________________________________

Rubi [A]  time = 0.596692, antiderivative size = 194, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {3596, 12, 3544, 205} \[ \frac{(67 A-3 i B) \sqrt{\tan (c+d x)}}{60 a^2 d \sqrt{a+i a \tan (c+d x)}}+\frac{\left (\frac{1}{8}-\frac{i}{8}\right ) (A-i B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac{(A+i B) \sqrt{\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac{(13 A+3 i B) \sqrt{\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Tan[c + d*x])/(Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])^(5/2)),x]

[Out]

((1/8 - I/8)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(a^(5/2)*d) +
 ((A + I*B)*Sqrt[Tan[c + d*x]])/(5*d*(a + I*a*Tan[c + d*x])^(5/2)) + ((13*A + (3*I)*B)*Sqrt[Tan[c + d*x]])/(30
*a*d*(a + I*a*Tan[c + d*x])^(3/2)) + ((67*A - (3*I)*B)*Sqrt[Tan[c + d*x]])/(60*a^2*d*Sqrt[a + I*a*Tan[c + d*x]
])

Rule 3596

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*A + b*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2
*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{A+B \tan (c+d x)}{\sqrt{\tan (c+d x)} (a+i a \tan (c+d x))^{5/2}} \, dx &=\frac{(A+i B) \sqrt{\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac{\int \frac{\frac{1}{2} a (9 A-i B)-2 a (i A-B) \tan (c+d x)}{\sqrt{\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx}{5 a^2}\\ &=\frac{(A+i B) \sqrt{\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac{(13 A+3 i B) \sqrt{\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}}+\frac{\int \frac{\frac{1}{4} a^2 (41 A-9 i B)-\frac{1}{2} a^2 (13 i A-3 B) \tan (c+d x)}{\sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}} \, dx}{15 a^4}\\ &=\frac{(A+i B) \sqrt{\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac{(13 A+3 i B) \sqrt{\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}}+\frac{(67 A-3 i B) \sqrt{\tan (c+d x)}}{60 a^2 d \sqrt{a+i a \tan (c+d x)}}+\frac{\int \frac{15 a^3 (A-i B) \sqrt{a+i a \tan (c+d x)}}{8 \sqrt{\tan (c+d x)}} \, dx}{15 a^6}\\ &=\frac{(A+i B) \sqrt{\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac{(13 A+3 i B) \sqrt{\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}}+\frac{(67 A-3 i B) \sqrt{\tan (c+d x)}}{60 a^2 d \sqrt{a+i a \tan (c+d x)}}+\frac{(A-i B) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx}{8 a^3}\\ &=\frac{(A+i B) \sqrt{\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac{(13 A+3 i B) \sqrt{\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}}+\frac{(67 A-3 i B) \sqrt{\tan (c+d x)}}{60 a^2 d \sqrt{a+i a \tan (c+d x)}}-\frac{(i A+B) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{4 a d}\\ &=-\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac{(A+i B) \sqrt{\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac{(13 A+3 i B) \sqrt{\tan (c+d x)}}{30 a d (a+i a \tan (c+d x))^{3/2}}+\frac{(67 A-3 i B) \sqrt{\tan (c+d x)}}{60 a^2 d \sqrt{a+i a \tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 6.1377, size = 216, normalized size = 1.11 \[ -\frac{e^{-2 i (c+d x)} \sqrt{\tan (c+d x)} \sec ^2(c+d x) \left (\sqrt{-1+e^{2 i (c+d x)}} \left (A \left (19 e^{2 i (c+d x)}+83 e^{4 i (c+d x)}+3\right )+3 i B \left (3 e^{2 i (c+d x)}+e^{4 i (c+d x)}+1\right )\right )+15 (A-i B) e^{5 i (c+d x)} \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )\right )}{60 a^2 d \sqrt{-1+e^{2 i (c+d x)}} (\tan (c+d x)-i)^2 \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Tan[c + d*x])/(Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])^(5/2)),x]

[Out]

-((Sqrt[-1 + E^((2*I)*(c + d*x))]*((3*I)*B*(1 + 3*E^((2*I)*(c + d*x)) + E^((4*I)*(c + d*x))) + A*(3 + 19*E^((2
*I)*(c + d*x)) + 83*E^((4*I)*(c + d*x)))) + 15*(A - I*B)*E^((5*I)*(c + d*x))*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 +
 E^((2*I)*(c + d*x))]])*Sec[c + d*x]^2*Sqrt[Tan[c + d*x]])/(60*a^2*d*E^((2*I)*(c + d*x))*Sqrt[-1 + E^((2*I)*(c
 + d*x))]*(-I + Tan[c + d*x])^2*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.076, size = 1096, normalized size = 5.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*tan(d*x+c))/tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(5/2),x)

[Out]

-1/240/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*(-12*I*B*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/
2)*tan(d*x+c)^2+15*I*A*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(
d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^4*a+15*B*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)
))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^4*a+60*I*B*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan
(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)*a-1060*I*A*(a*tan(d*x+c)*(1+I*t
an(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)+60*A*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x
+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^3*a-90*I*A*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*
tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^2*a+15*I*A*2^(1/2)*ln(-(-2*2
^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a-90*B*2^(1/2)*l
n(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+
c)^2*a+12*B*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^3+268*I*A*(a*tan(d*x+c)*(1+I*tan(d*x
+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^3-60*I*B*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c
)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^3*a-60*A*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(
d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)*a+908*A*(a*tan(d*x+c)*(1+I*tan(d
*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2-60*I*B*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+15*B*2^(1/2)
*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a+60*B
*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)-420*A*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I
*a)^(1/2))/a^3/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-tan(d*x+c)+I)^4/(-I*a)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 2.13174, size = 1370, normalized size = 7.06 \begin{align*} \frac{{\left (15 \, \sqrt{\frac{1}{2}} a^{3} d \sqrt{\frac{-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{5} d^{2}}} e^{\left (6 i \, d x + 6 i \, c\right )} \log \left (\frac{{\left (2 i \, \sqrt{\frac{1}{2}} a^{3} d \sqrt{\frac{-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2}{\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 i \, A + 4 \, B}\right ) - 15 \, \sqrt{\frac{1}{2}} a^{3} d \sqrt{\frac{-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{5} d^{2}}} e^{\left (6 i \, d x + 6 i \, c\right )} \log \left (\frac{{\left (-2 i \, \sqrt{\frac{1}{2}} a^{3} d \sqrt{\frac{-i \, A^{2} - 2 \, A B + i \, B^{2}}{a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2}{\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 i \, A + 4 \, B}\right ) + \sqrt{2}{\left ({\left (83 \, A + 3 i \, B\right )} e^{\left (6 i \, d x + 6 i \, c\right )} + 6 \,{\left (17 \, A + 2 i \, B\right )} e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \,{\left (11 \, A + 6 i \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + 3 \, A + 3 i \, B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-6 i \, d x - 6 i \, c\right )}}{120 \, a^{3} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/120*(15*sqrt(1/2)*a^3*d*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^5*d^2))*e^(6*I*d*x + 6*I*c)*log((2*I*sqrt(1/2)*a^3*
d*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^5*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A
+ B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x +
 I*c))*e^(-I*d*x - I*c)/(4*I*A + 4*B)) - 15*sqrt(1/2)*a^3*d*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^5*d^2))*e^(6*I*d*
x + 6*I*c)*log((-2*I*sqrt(1/2)*a^3*d*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^5*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*((
I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e
^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(4*I*A + 4*B)) + sqrt(2)*((83*A + 3*I*B)*e^(6*I*d*x
 + 6*I*c) + 6*(17*A + 2*I*B)*e^(4*I*d*x + 4*I*c) + 2*(11*A + 6*I*B)*e^(2*I*d*x + 2*I*c) + 3*A + 3*I*B)*sqrt(a/
(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c))*e^(-6
*I*d*x - 6*I*c)/(a^3*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/tan(d*x+c)**(1/2)/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.45931, size = 209, normalized size = 1.08 \begin{align*} \frac{-\left (i + 1\right ) \, \sqrt{-2 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}}{\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{2} +{\left (\left (2 i - 2\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a - \left (2 i - 2\right ) \, a^{2}\right )} \sqrt{-2 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} \sqrt{i \, a \tan \left (d x + c\right ) + a} B}{2 \,{\left ({\left (i \, a \tan \left (d x + c\right ) + a\right )}^{5} a - 3 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{4} a^{2} + 2 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3} a^{3}\right )} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

1/2*(-(I + 1)*sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*(I*a*tan(d*x + c) + a)*a^2 + ((2*I - 2)*(I*a*tan(d*x +
 c) + a)*a - (2*I - 2)*a^2)*sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*sqrt(I*a*tan(d*x + c) + a)*B)/(((I*a*tan
(d*x + c) + a)^5*a - 3*(I*a*tan(d*x + c) + a)^4*a^2 + 2*(I*a*tan(d*x + c) + a)^3*a^3)*d)